
Computational Analysis of the Bidirectional
Activation-based Learning in Autoencoder Task

Peter Csiba and Igor Farkaš
Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava

Mlynská dolina, 84248 Bratislava, Slovak Republic
Email: farkas@fmph.uniba.sk

Abstract—We use computational simulations to analyse the
behavior of the recently proposed Bidirectional Activation-based
Learning algorithm (BAL) which was inspired by the General-
ized Recirculation algorithm (GeneRec). Both algorithms avoid
biologically implausible backpropagation of the error signal, and
instead use propagation of neuron activations, which drive the
weight updates, using only local variables. We take a closer look at
the 4-2-4 autoencoder task for which, despite the task simplicity,
reliable convergence could not be achieved by either of the two
models. We propose the learning mode with two, significantly
different, learning rates (BAL2) that leads to considerably more
successful task learning. We also analyze various factors, related
to hidden activations, that contribute to further increase of the
learning success. In addition, we test BAL2 also on the large scale
database of handwritten digits, in which it yields relatively good
performance.

I. INTRODUCTION

The well-known error backpropagation (BP) learning [1]
is known to be biologically implausible due to the mechanism
of error propagation and the nonlocal learning rule. As a
remedy, O’Reilly [2] designed the Generalized Recirculation
(GeneRec) algorithm that avoids the computation of error
derivatives, but can compute the error gradient, using only local
variables (unlike BP). GeneRec was designed as an extension
of Hinton and McClelland’s model [3] based on recirculation
between two layers of units (visible and hidden) with symmet-
ric weights, which was restricted to autoassociation. To make
it work, Hinton and McClelland used a four-stage activation
update process. Unlike the recirculation algorithm, GeneRec is
applied to a three-layer network using bidirectional interaction
(only) between two layers of units (hidden and output) in a
two-phase activation update process, and can be trained to
learn arbitrary input–output mapping.

Recently, we proposed a bidirectional activation-based
learning (BAL), which is based on the GeneRec model, but
unlike it, is completely symmetrical regarding the activation
propagation and the weight update rules [4]. Our motivation for
designing the BAL model, that also uses only local variables in
learning rule, was to implement it in our robotic mirror neuron
system model, that is assumed to require the bidirectional
mapping between high-level sensory and motor representations
[5]. The behavior of BAL was tested in three simulation
experiments, of which the simplest task (4-2-4 autoencoder)
did not result in a reliable convergence of the algorithm
peaking at around 65% success rate (as opposed to 90% for
GeneRec and 100% for error backpropagation). Hence, we
looked at this phenomenon trying to understand the problem.

Here we also test the models on a large scale database of
hand-written digits (MNIST).

This paper is organized as follows. In Section 2, we
describe relevant models and the methods used. In Section
3 we present results on both data sets, with a special focus on
the autoencoder task. Section 4 concludes the paper.

II. MODELS AND METHODS

A. Generalized Recirculation

The Generalized Recirculation algorithm (GeneRec) ap-
plies to a three-layer network with full connectivity between
layers whose activation rules are described in Table I.

TABLE I. EQUILIBRIUM NETWORK VARIABLES IN GENEREC.

Layer Phase Net Input Activation

Input (s) − - si = stimulus input

Hidden (h) − η−j =
∑

i w
IH
ij si +

∑
k w

OH
kj o

−
k h−

j = σ(η−j)

+ η+j =
∑

i w
IH
ij si +

∑
k w

OH
kj o

+
k h+

j = σ(η+j)

Output (o) − η−k =
∑

j w
HO
jk hj o−k = σ(η−k)

+ - o+k = target output

GeneRec uses plus and minus phases during activation
propagation and is able to learn, as error backpropagation,
arbitrary input–output mappings [2]. The activation flow is
depicted in Figure 1. The model has reciprocal connectivity
between hidden and output layer. Hence it uses three weight
matrices W IH, WHO and WOH for the input–hidden, hidden–
output and output–hidden weights, respectively. The activation
flow starts in minus phase, when the stimulus si is presented.
Note that the net input term at the hidden layer includes the
input from both visible layers before applying the sigmoid
activation function σ(η) = 1/(1 + exp(−η)). Output units
produce activations o−k in minus phase but can also be clamped
to target activations o+k at the onset of plus phase. Input units
can only deliver stimuli si at the onset of minus phase. The
model requires the computation of equilibrium activation states
which is achieved using an iterative method

am(t+ 1) = σ(
∑
n

wmnan(t)) (1)

where am(t) is the activation of m-th unit at discrete time t.
The equation (1) is iterated while |am(t+ 1)− am(t)| > ε for
some unit m (hidden or output) and chosen ε > 0.

In
p
u
t
layer

O
u
tp
u
t
layer

H
id
d
en

layer

In
p
u
t
layer

O
u
tp
u
t
layer

H
id
d
en

layer

Fig. 1. Depicting the minus (left) and plus (right) phases of GeneRec defined
in Table I. Taken from [6].

The GeneRec learning rule derived for all three weight
matrices has the form

∆wij = λa−i (a+j − a
−
j), (2)

where a−i denotes the presynaptic and a−j the postsynaptic unit
activation in minus phase, a+j is the postsynaptic activation
in plus phase and λ denotes the learning rate. For updating
the concrete weight matrices, the activation values are set
correspondingly. For example, for updating WHO, we set
a−i = h−i , a−j = o−j and a+j = o+k .

It was proven [2] that GeneRec converges if the learning
rule (2) is a valid approximation to the error derivate and the
weights are symmetric, i.e. WHO = (WOH)>. O’Reilly [2]
proposed two more modifications, the midpoint learning rule

∆wij = λ
1

2
(a−i + a+i)(a+j − a

−
j) (3)

and the symmetric learning rule

∆wij = λ(a+j a
−
i − a

−
j a

+
i − 2a−j a

−
i) (4)

which aims to preserve the weight symmetry. By combining
(3) and (4), O’Reilly got the rule

∆wij = λ(a+i a
+
j − a

−
i a
−
j) (5)

which is formally equivalent to the Contrastive Hebbian
learning (CHL), earlier introduced in the context of Hopfield
networks [7].

B. Bidirectional activation-based learning algorithm

The design of Bidirectional Activation-based Learning al-
gorithm (BAL, [4]) was motivated by the biological plausibility
of GeneRec. BAL inherits the learning rule (2) of GeneRec and
also the two activation phases. But unlike GeneRec, BAL aims
to learn bidirectional mapping between inputs and outputs and
for this purpose it uses four weight matrices (W IH, WHO,
WOH and WHI). The design of BAL is completely symmetric
as shown in Table II.

TABLE II. ACTIVATION PHASES AND STATES IN BAL.

Layer Phase Net Input Activation

x F - xF
i = forward stimulus

h F ηFj =
∑

i w
IH
ij xF

i hF
j = σ(ηFj)

y F ηFk =
∑

j w
HO
jk hF

j yFk = σ(ηFk)

y B - yBk = backward stimulus

h B ηBj =
∑

k w
OH
kj yBk hB

j = σ(ηBj)

x B ηBi =
∑

j w
HI
ji h

B
j xB

i = σ(ηBi)

Therefore, we avoid input-output notation of layers as used
in GeneRec, because in our case not only the output can
be evoked by input presentation, but also vice versa. Hence,
instead of minus and plus phases, we rather use forward
and backward phases. This brings us to a different notation
where aF denotes forward activations (pass) and aB denotes
backward activations. Layers x and y are visible and layer h
is hidden. During the forward pass, the x units are clamped to
xF and we get the activations xF → hF → yF. During the
backward pass, the y units are clamped to yB and we get the
activations yB → hB → xB.

The mechanism of weights update partially matches that
of GeneRec. Each weight in BAL network (i.e. belonging to
one of the four weight matrices) is updated using the same
learning mechanism, according to which the weight difference
is proportional to the product of the presynaptic (sending) unit
activation ap and the difference of postsynaptic (receiving) unit
activations aq , corresponding to two activation phases (F and
B, in particular order). Namely, weights in x-to-y direction
(belonging to h and y units) are updated as

∆wF
pq = λ aFp (aBq − aFq), (6)

where, as in the GeneRec algorithm, aFp denotes the presynap-
tic activity, aFq is the postsynaptic activity, and aBq denotes
the postsynaptic activity from the opposite phase (y-to-h).
Analogically, the weights in y-to-x direction (belonging to h
and x units) are updated as

∆wB
pq = λ aBp (aFq − aBq) (7)

All units have trainable thresholds (biases) that are updated in
the same way as regular weights (being fed with a constant
input 1).

C. BAL with two learning rates

In this paper, we propose and analyze the two learning
rates version of the model (BAL2, [8]), that uses two separate
learning rates for different layers, lambda hidden (λH), for
weight matrices W IH and WOH and lambda visible (λV), for
weights WHI and WHO. Both λH and λV are held constant
during learning. Their names are derived from the layers on
which the error term (a+j − a

−
j) is computed.

Our simulations show that setting λH�λV leads to signif-
icantly better performance in comparison to the standard BAL
model. The intuition behind it as follows: because λH�1, W IH

and WOH are updated only minimally and also activations hF
and hB change only a little and hence |hF − hB| converges
to zero more slowly. Thus the error terms (yBj − yFj) and
(xFj − xBj) from the BAL learning rule for WHI and WHO

have a longer lasting impact on the weight change with non-
constant hidden activations. The importance of suitable hidden
activations was further confirmed by the candidate selection
experiment (described below).

Most of the previous work regarding different learning
rates is based on dynamic learning rate (DLR) model [9]. The
aim of DLR is to compute the best learning rate in terms of
successful convergence and avoidance of local minima [10].
There have been several approaches proposed how to achieve
this. Most of them have individual learning rates for each
weight in the network which could change in time. Some

approaches precompute learning rates [11] while others adapt
learning rates dynamically through the training process [12],
[13], [14]. According to [15], picking a different learning
rate for each weight can improve convergence. Our simpler
approach only uses two learning rates, so BAL2 model is in
a sense probably unique in terms of the number of learning
rates.

D. Candidate selection

We introduced the candidate selection approach to test if
some particular network features, related to the hidden layer
activations, have an impact on the learning success of BAL2.
The only difference between standard BAL or BAL2, and
the candidate selection is that before the training phase, a
number of networks are randomly generated from which a
best candidate network is selected, based on the considered
feature.

We proposed and investigated several features: (a) the
average distance between all hidden activations, distH, (b) the
average distance between corresponding forward and backward
hidden activations, (c) the average distance between corre-
sponding forward and backward visible activations, (d) the
average weight of all 4 weight matrices, (e) convexity of
hidden activations, and (f) the maximal difference between
activations in the last two iterations. The impact of all these
features was tested using a fitted linear regression model.
The training dataset was created by generating standard BAL
networks, measuring feature values before the training phase
and adding the success rate label equal to 1− bitSuccF after
the training phase.

Using linear regression, we found that the most important
feature was distH. This discovery actually led to the introduc-
tion of the BAL2 model. Another important feature turned out
to be the convexity (the boolean value) which reveals whether
the four hidden activations (points in 2D space, in case of
two hidden units) form a convex polygon, i.e. whether each
of those is linearly separable from the others, to be correctly
associated with an output unit. This is a necessary condition
for perfect success rate.

III. SIMULATIONS

Following [4], we measure two properties of a model, the
success rate and the convergence time.

Success rate quantifies output accuracy. Before comparing
the computed outputs on both visible layers to targets, the
activations yF and xB are classified using a threshold 0.5.
We define two measures of success: Bit success (bitSucc)
quantifies the fraction of correctly predicted bits, whereas
pattern success (patSucc) quantifies the fraction of correctly
predicted patterns (i.e. all bits in a pattern have to be correctly
classified) evaluated for both directions.

Convergence time denotes the number of epochs before
we stop training. In case of autoencoder, we use two options:
the preset number of epochs or when successful learning was
achieved (patSuccF = patSuccB = 1). In case of the digits
dataset we decided to stop the training if patSuccF did not
increase during 3 consecutive epochs.

Datasets. As mentioned in the introduction, we test BAL2
on two different tasks. The first one is the 4-2-4 autoencoder
task which, despite its simplicity, resisted reliable convergence
in case of both GeneRec and BAL, so the primary motivation
was to discover the reasons behind it. The second is the
classification task of the well-known large-scale database of
handwritten digits [16], first analysed in [17]. We chose this
dataset, because it is big and complex enough, well-known
such that BAL2 performance can be compared with other
models. In all simulations, following [2], we initialize the
network weights in both tasks to small values from the normal
distributionN (0; 1/

√
nI + 1), where nI denotes the input data

dimension.

A. The 4-2-4 Autoencoder

The encoder task only contains four four–dimensional
patterns with one-hot numerical representation (i.e. one unit
with value 1, all others 0). We use two units in the hidden
layer yielding the 4-2-4 architecture (with 3 hidden units, BAL
learns the task reliably). In the case of BAL, only 60–65%
patSucc was achieved for a range of learning rates (with a
sharp drop in performance towards 0 for λ>2). This behavior
served as a motivation to look for improvement. As mentioned
in Section 2, the solution to the problem of convergence
can be accessed using two different learning rates. Hence,
we systematically analyse the performance of BAL2 model
depending on parameters λH and λV, using 2D plots. In
2D plot, we display the mean performance of 500 networks
for each pair (λV, λH). The networks were trained while
patSuccF < 1 or epoch < Epochmax = 100,000.

In Table III we can see the comparison of the most
important models. We achieved an improvement of patSuccF
from 62.7% to 93.1% by using BAL2. This result was further
improved to 99.86% by setting networks with candidate selec-
tion (i.e. almost guaranteed convergence). This confirmed the
finding that hidden distance and convexity of hidden represen-
tations are important features of BAL. Of the GeneRec-based
models, the original GeneRec version and the midpoint version
show good performance (> 90%), whereas the symmetric and
CHL version work inferior to BAL. Note that BAL-based
models require correct mapping in both directions (not required
in original autoencoder), which makes the task more difficult.

TABLE III. COMPARISON OF DIFFERENT MODELS ON THE 4-2-4
ENCODER TASK. RESULTS FOR BP THROUGH CHL ARE TAKEN FROM [2].

Algorithm λH λV patSuccF Epochs

BP 2.4 2.4 100% 60

GR 0.6 0.6 90% 418

GR Sym 1.4 1.4 56% 88

GR Mid 2.4 2.4 92% 60

CHL 1.2 1.2 56% 77

BAL 0.9 0.9 62.7% 5136

BAL2 0.0002 500 93.1% 5845

BAL2 Can 0.0002 500 99.86% 150.4

If we want to compare execution time based on epochs
in Table III, then we must be aware of that GeneRec epochs
take longer than those of other models. This is because of the
recirculation step, for which a number of iterations is needed

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

0.1^4
0.001
0.01
0.1
1 10 100
1000
10^4
10^5
10^6
10^7
10^8
10^9

la
m

bd
a

hi
dd

en

lambda visible

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

9090

90

85

85

85

8080

80 80

75
75

75

7000

70

70

7070

70

70

70 70

70

65

65

65

65

65

65

65 65

65

0 60

60

0 55

55
55

50

50
50

4545

45

40

40
40

0.1^9
0.1^8
0.1^7
0.1^6
0.1^5
0.1^4
0.001

0.01
0.1

1
10

0.1^4
0.001
0.01
0.1
1 10 100
1000
10^4
10^5
10^6
10^7
10^8
10^9

la
m

bd
a

hi
dd

en

lambda visible

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

5000

5000

5000

5000

5000

00

4000
4000

4000 4000

4000

4000

40
00

40
00

3000

3000

3000

30
00

3000

30
00

2000

2000

2000

2000

2000

2000

2000
2000

2000

2000

0

2000

20002000

2000

2000

0 1000 10
00

Fig. 2. BAL2 success rate (top) and convergence time (bottom) needed
for successful networks on the autoencoder task. The best network achieved
96.5% with λH = 0.0003 and λV = 1000.

for activations to settle (up to 30). Thus the 418 epochs of
GeneRec roughly correspond to 5845 epochs of BAL2 in terms
of execution time.

In Figure 2 we compare the success rate for a range of
λV and λH . It is interesting that the subspace with best
achieving networks is organized around the horizontal midline
[(10, 0.001), (109, 0.001)]. That means that the performance
mainly depends on λH and for a fairly long range of λV.

In the corresponding convergence plot, the elongated peak
occurs around the midline [(0.01, 0.0001), (109, 0.0001)],
whose position is unclear (with respect to the plot of success
rate). Maybe it is related to Epochmax and the fact that we
calculated epochs only from successful networks. Therefore,
successful networks having λH < 10−6 tend to converge faster
using λV>1, because otherwise they would fail to converge
due to λH · Epochmax < 1.

There is a small inconsistency between Table III, with
93.12% success rate for BAL2, and Figure 2 where it was
96.5%. This is because in the first case, the average perfor-
mance of 10000 networks was used. This result is more likely
to mirror the reality, because in the second case only 200
networks were used for a particular (λV , λH) pair. As there
were about 50 candidates for best success rate, it was likely
that some of them performed better than average.

In Figure 3 and 4 we show forward hidden activations of
example networks of BAL and BAL2 learning, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

Fig. 3. BAL hidden forward activations corresponding to four input pattern
in the autoencoder task during learning. The top row shows examples of
unsuccessful networks and the bottom row shows successful ones. Only the
first ≈ 100 epochs led to changes in hidden unit activations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

hi
dd

en
 a

ct
iv

at
io

n
on

 u
ni

t 2

hidden activation on unit 1

Fig. 4. BAL2 hidden forward activations corresponding to four patterns in the
autoencoder task during learning. The top row shows examples of unsuccessful
networks and the bottom row shows successful networks. Only the first ≈
10000 epochs led to changes in hidden unit activations.

Each color represents the forward hidden representation of
one of the four inputs in the 4-2-4 encoder task. The plotted
activations start at epoch = 0 depicted with black squares and
continue as shown. The main difference between BAL2 and
BAL is the speed of activation change. For BAL, we use λ =
0.6, which is several orders of magnitude different from both
λH and λH . Another observation is that after some initial
steps BAL tends to stop the activation change, due to settling
‖hF − hB‖ ≈ 0.

Another source of the error that we investigated (and
explained in Section II-D) could be non-convex hidden ac-
tivation initializations. In the beginning, the weight matrices
are initialized at random and that leads to random hidden
activations. And if the hidden activations are also non-convex

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100 1000 10000 100000

hi
dd

en
 d

is
ta

nc
e

epoch

BAL
TLR

TLR can

Fig. 5. Comparison of distH evolution for the 4-2-4 autoencoder task in
three models: BAL, BAL2 (TLR) and BAL2 with candidate selection.

in the end, then it is impossible to perfectly classify on the
hidden–to–visible layer due the linear separability theorem.
Therefore if the network had non-convex hidden activations
in the beginning, then it must escape the non-convex hidden-
state organization for successful convergence. Figure 5 reveals
that candidate selection indeed picks networks with greater
distH. We can observe that distH stagnates through the
training phase. This confirms the importance of proper weight
initialization.

As with generalization of BAL to BAL2, we tried the
generalization of GeneRec using two different learning rates.
The results in Figure 6 show that the highest success rate of
around 90% is obtained for λ ≈ 0.1 to 1, with no increase in
the success rate compared to λV=λH, i.e. the original GeneRec.

The results suggest a hypothesis why BAL2 outperforms
BAL on the 4-2-4 autoencoder task. The reason is that the
hidden activations settle before WHO and WHI manage to tune
to optimal values. This is explained by the fact that forward
and backward hidden activations become identical too early.
Moreover, the weight initialization can help this. In summary,
the first issue is solved by setting λH�λV what increases
the number of epochs to the training phase. The second issue
is solved by candidate selection which prevents initializing
hidden activations too close to each other.

B. Handwritten digits

We performed tests with BAL2 on a high-dimensional
graphical task using handwritten digits dataset and compared
it to other known models. The MNIST database consists of
42000 samples of 28×28 grayscale images of single digits.
As in the previous simulations, we trained the networks for
range of λH and λV values to find the best parameters. Then
we analysed the network with the best parameters.

Before the training we split the dataset to the training set
with 38000 samples and test set with 4000 samples. Then we
trained the networks on the train set and evaluated them on the
test set. We set Epochmax = 20 and the training was stopped
if patSuccF was not increased for 3 successive epochs. The
network architecture 784–300–10 was chosen, since results
for BP with such architectures exist. Note that for the final
classification we chose the unit with the maximal activation
(analogically to softmax).

We confirmed that BAL2 could learn the high-dimensional
task quite successfully, as shown in Figure 7. The properties

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

100

0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

75

70

65

65

60

55

55

50

7

0

40

40

35

35

30

30

30

30

25

25

25

20

20

20

15

15

15

10

10

10

000

5

5

5

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.1

1

10

100
0.1^4

0.001

0.01

0.1

1 10 100

la
m

bd
a

hi
dd

en

lambda visible

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

80
00

8000

8000

7000

70
00

0

7000

700060
00

60
00

6000

0

5000

50
00

5000

5000

50004000

40
00

4000

4000

3000

3000

30
00

3000

3000

2000

2000

20
00

01000 00

Fig. 6. GeneRec success rate and convergence time on the autoencoder task.
The best result 83% was achieved with λH = 0.3 and λV = 1.

of the plot are similar to the autoencoder case, even though in
the case of digits a wider plateau of best models spans several
orders of magnitudes of both learning rates. However, it again
holds that λH � λV and the success space changes smoothly
in parameters. The main difference is that the magnitude of
values of both learning rates is smaller; concretely, λH< 10−6

and λV≈ 10−2∼102. This leads to a suggestion that for higher
dimensional tasks, which usually also have more samples,
lower values of learning rates should be chosen.

0.1^9

0.1^8

0.1^7

0.1^6

0.1^5

0.1^4

0.001

0.01

0.01

0.1

1 10 100

1000

10^4

10^5

10^6

la
m

bd
a

hi
dd

en

lambda visible

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.80.75 0.7 0.7

0.65

0.6

0.6

Fig. 7. BAL2 performance on the digits task. The highest patSuccF =
88.47% was achieved with λH = 10−8 and λV = 0.1.

For comparison of BAL2 on the digits task we chose
neural network models with similar architecture from [16]. In
Table IV we see that BAL2 is able to learn higher dimensional
tasks, but still has a performance gap to fill. Note that it
performs comparably to a linear classifier, i.e. a two-layer
neural network. Surprisingly, BAL performs extremely bad,
but we did not analyze reasons for this failure.

TABLE IV. COMPARISON OF DIFFERENT MODELS ON THE
HANDWRITTEN DIGITS TASK. DATA FROM [17] AND [16].

Algorithm λH λV patSuccF Epochs

Linear classifier – – 88 –

BP 784–300–10 – – 95.3 –

BAL 784–300–10 0.01 0.01 9.8 20

BAL2 784–300–10 10−8 0.1 88.47 20

GR 784–300–50–10 0.03 0.03 43.22 50

To peek into BAL2 behavior after convergence, we re-
constructed backward representations of inputs. Since in this
task, multiple inputs of the same category are supposed to
lead to the same (classified) output, we expected the backward
images to be a blend of the category inputs. As we can see
in Figure 8, BAL2 provides readable backward activations.
The best shapes could be seen for digits ”0”, ”1” and ”8”.
This intuitively proves that the model is capable of learning
the bidirectional mapping (although for classification tasks the
backward mapping is not required).

Fig. 8. Backward representations for the most successful BAL2 instance on
the digits task.

IV. CONCLUSION

We proposed and analysed the BAL2, a modification of
Bidirectional Activation-based Learning algorithm with two,
but significantly different, learning rates, which increased the
success rate in the 4–2–4 autoencoder task from 62.7% to
93.1%. Prior to this modification, we observed that original
BAL converges rapidly to the state, when the backward and
forward activations converge to the same values. This inspired
our hypothesis to explain why BAL had convergence problems
learning the autoencoder task. Our hypothesis was further
confirmed by candidate selection approach, which selected the
initialized networks with more distant hidden activations. This
further increased the success rate from 93.1% to 99.84% and
reduced an average number of epochs needed for convergence
from 5845 to 150. In the second, classification task, we applied
BAL2 on the handwritten digit recognition task using the 784–
300–10 architecture. Although BAL2 still has a performance
gap compared to backpropagation, it achieved a far better
success rate (over 88%) than the original BAL.

The concept of (significantly) different learning rates turned
out to be important in both tasks that we presented in this
paper (autoencoding and classification). As such, it could be
worth further investigation, with a goal to find out, whether
it is useful in general, in task-dependent manner, or it results
from the nature of activation-based learning.

ACKNOWLEDGMENT

This work was supported by grants 1/0898/14 and
1/0503/13 from Slovak Grant Agency for Science (VEGA).

REFERENCES

[1] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[2] R. C. O’Reilly, “Biologically plausible error-driven learning using local
activation differences: The generalized recirculation algorithm,” Neural
Computation, MIT Press, vol. 8, no. 5, pp. 895–938, 1996.

[3] G. Hinton and J. McClelland, “Learning representations by recircula-
tion,” in Neural Information Processing Systems. American Institute
of Physics, 1988, pp. 358–366.

[4] I. Farkaš and K. Rebrová, “Bidirectional activation-based neural net-
work learning algorithm,” in Artificial Neural Networks and Machine
Learning (ICANN). Springer, 2013, pp. 154–161.

[5] K. Rebrová, M. Pecháč, and I. Farkaš, “Towards a robotic model of the
mirror neuron system,” in The 3rd Joint IEEE International Conference
on Development and Learning and on Epigenetic Robotics, 2013.

[6] T. Orrú, J. L. G. Rosa, and M. Andrade Netto, “Sabio: A biologically
plausible connectionist approach to automatic text summarization,”
Applied Artificial Intelligence, vol. 22, no. 9, pp. 896–920, 2008.

[7] J. Movellan, “Contrastive hebbian learning in the continuous hopfield
model,” in Proceedings of the Connectionist Models Summer School,
1990, pp. 10–17.

[8] P. Csiba, “Analysis of the generalized recirculation-based learning
algorithm in bidirectional neural network,” Master’s thesis, Faculty
of Mathematics, Physics and Informatics, Comenius University in
Bratislava, 2014.

[9] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Networks, Elsevier, vol. 1, no. 4, pp. 295–307, 1988.

[10] L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that
guarantees convergence in feedforward networks,” IEEE Transactions
on Neural Networks, vol. 17, no. 5, pp. 1116–1125, 2006.

[11] M. K. Weir, “A method for self-determination of adaptive learning rates
in back propagation,” Neural Networks, Elsevier, vol. 4, no. 3, pp. 371–
379, 1991.

[12] X.-H. Yu and G.-A. Chen, “Efficient backpropagation learning using
optimal learning rate and momentum,” Neural Networks, vol. 10, no. 3,
pp. 517–527, 1997.

[13] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, “Improving
the convergence of the backpropagation algorithm using learning rate
adaptation methods,” Neural Computation, vol. 11, no. 7, pp. 1769–
1796, 1999.

[14] C.-C. Yu and B.-D. Liu, “A backpropagation algorithm with adaptive
learning rate and momentum coefficient,” in IJCNN. Proceedings of the
International Joint Conference on Neural Networks, vol. 2. IEEE,
2002, pp. 1218–1223.

[15] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade. Springer, 1998,
pp. 9–48.

[16] Y. A. LeCun, C. Corinna, and J. C. B. Christopher, “The MNIST
database of handwritten digits,” http://yann.lecun.com/exdb/mnist/,
1998, [Online; accessed 28-April-2014].

[17] Y. A. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

